Genetic knockout and pharmacologic inhibition of neuronal nitric oxide synthase attenuate nerve injury-induced mechanical hypersensitivity in mice
نویسندگان
چکیده
Neuronal nitric oxide synthase (nNOS) is a key enzyme for nitric oxide production in neuronal tissues and contributes to the spinal central sensitization in inflammatory pain. However, the role of nNOS in neuropathic pain remains unclear. The present study combined a genetic strategy with a pharmacologic approach to examine the effects of genetic knockout and pharmacologic inhibition of nNOS on neuropathic pain induced by unilateral fifth lumbar spinal nerve injury in mice. In contrast to wildtype mice, nNOS knockout mice failed to display nerve injury-induced mechanical hypersensitivity. Furthermore, either intraperitoneal (100 mg/kg) or intrathecal (30 microg/5 microl) administration of L-NG-nitro-arginine methyl ester, a nonspecific NOS inhibitor, significantly reversed nerve injury-induced mechanical hypersensitivity on day 7 post-nerve injury in wildtype mice. Intrathecal injection of 7-nitroindazole (8.15 microg/5 microl), a selective nNOS inhibitor, also dramatically attenuated nerve injury-induced mechanical hypersensitivity. Western blot analysis showed that the expression of nNOS protein was significantly increased in ipsilateral L5 dorsal root ganglion but not in ipsilateral L5 lumbar spinal cord on day 7 post-nerve injury. The expression of inducible NOS and endothelial NOS proteins was not markedly altered after nerve injury in either the dorsal root ganglion or spinal cord. Our findings suggest that nNOS, especially in the dorsal root ganglion, may participate in the development and/or maintenance of mechanical hypersensitivity after nerve injury.
منابع مشابه
Cyclooxygense-1 inhibition delays hypersensitivity to nerve injury
Despite the important role of both cyclooxygenase (COX) isoforms (i.e. COX-1 and COX-2) in maintenance of hypersensitivity following peripheral nerve injury, their role in the development of neuropathic pain is not clear. The present study was undertaken to determine the effect of COX inhibitors to address the potential role of COX isozymes in the development of neuropathic pain in rats after c...
متن کاملCyclooxygense-1 inhibition delays hypersensitivity to nerve injury
Despite the important role of both cyclooxygenase (COX) isoforms (i.e. COX-1 and COX-2) in maintenance of hypersensitivity following peripheral nerve injury, their role in the development of neuropathic pain is not clear. The present study was undertaken to determine the effect of COX inhibitors to address the potential role of COX isozymes in the development of neuropathic pain in rats after c...
متن کاملEffect of nitric oxide on the attenuation of acquisition of morphine-induced conditioned place preference by the essential oil from Cuminum cyminum L. fruit in mice
Introduction: Nitric oxide (NO) is a neuronal messenger molecule in the central nervous system, which is generated from L-arginine by nitric oxide synthase (NOS) and involves in many important opioid-induced effects. Our previous studies revealed that Cuminum cyminum interestingly reduces morphine sensitization, tolerance and dependency in male mice. Therefore, in the present study, the effe...
متن کاملUpregulation of neuronal nitric oxide synthase in the periphery promotes pain hypersensitivity after peripheral nerve injury.
Peripheral nerve injury often results in neuropathic pain that is manifested as hyperalgesia, and allodynia. Several studies suggest a functional role for neuronal nitric oxide synthase (nNOS) in the development or maintenance of neuropathic pain, but such a contribution remains unclear. In our current study, we found that intraplantar injection of the NOS substrate L-arginine or NO donor 3-mor...
متن کاملRole of neuronal nitric oxide in the regulation of vasopressin expression and release in response to inhibition of catecholamine synthesis and dehydration.
We used neuronal nitric oxide synthase (nNOS) gene knockout mice to study the effects of catecholamines and neuronal nitric oxide on vasopressin expression in the hypothalamic neurosecretory centers. nNOS gene deletion did not change the level of vasopressin mRNA in the supraoptic or paraventricular nuclei. In contrast, vasopressin immunoreactivity was lower in nNOS deficient mice than in wild-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular Pain
دوره 3 شماره
صفحات -
تاریخ انتشار 2007